If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-26x-294=0
a = 1; b = -26; c = -294;
Δ = b2-4ac
Δ = -262-4·1·(-294)
Δ = 1852
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1852}=\sqrt{4*463}=\sqrt{4}*\sqrt{463}=2\sqrt{463}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{463}}{2*1}=\frac{26-2\sqrt{463}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{463}}{2*1}=\frac{26+2\sqrt{463}}{2} $
| 2x-6=-2+2x | | 10x+6=5x+6 | | 5t-7=-7t+7 | | 4x+3=x-24 | | 4b+6=2+4 | | 3(x+4)(x+7)=0 | | 2x^2−x+15=0 | | 4×+3=x-24 | | 5x²-12x+4=0 | | .36(12)+.06x=0.18(6+x) | | 6(-2x-3)=-114 | | 144+4x-4x=48+8x-4x | | 10=2v-14 | | 25=-5(2+x) | | 2(3x+5)=4x+4 | | 6x-32+4=-32+6x | | -5x-1=-4x+2 | | (x6)+4=15 | | 5x+4x+7=15-7 | | (7+8)w=14 | | ŷ=1.41x+3.16 | | (2+3)+y=(1+4) | | (2+3)+y=(1+4 | | (3/5t)-(1/10t)=(5/2)t | | (2x-9)(8-x)=0 | | 3/5t-1/10t=t5/2 | | 7^5x+4=28 | | 3.x=x+8 | | 2x-3x-x=-24 | | 2w•w=18 | | -9=(x2) | | 0.7x+0.3=4.5 |